MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.



ψ     [   ]    .




                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  1 /  = [          ] ω       ψ      [  / [    ]    .   .



   = [          ] ,     [ ψ      ] / [  ]    .]    .




 = [          ] ,     [ ψ      [][]    .



ψ [ ψ  []/    .



ψ  / [] /  [] /  ]    . ] 



ψ     /  [ ]    .



ψ     [ ]    .


ψ      []    .






ψ  [ ]/     .


* [ ] .








 [].  .


ψ []  .










[]    .


ψ      []  / ]    .






ψ     [] ]/ / ]     .


ψ [  []   .








ψ [] / ψ     .



  [] / ψ   .






princípio de exclusão de Pauli é um princípio da mecânica quântica formulado por Wolfgang Pauli em 1925. Ele afirma que dois férmions idênticos não podem ocupar o mesmo estado quântico simultaneamente. Uma forma mais rigorosa de enunciar este princípio é dizer que a função de onda total de um sistema composto por dois férmions idênticos deve ser antissimétrica, com respeito ao cambiamento de duas partículas. Para elétrons de um mesmo átomo, ele implica que dois elétrons não podem ter os mesmos quatro números quânticos. Por exemplo, se os números quânticos , e  são iguais nos dois elétrons, estes deverão necessariamente ter os números  diferentes, e portanto os dois elétrons têm spins opostos.

O princípio de exclusão de Pauli é uma consequência matemática das restrições impostas por razões de simetria ao resultado da aplicação do operador de rotação a duas partículas idênticas de spin semi-inteiro.

O princípio de exclusão de Pauli é um dos mais relevantes princípios da física, basicamente porque os três tipos de partículas que formam a matéria ordinária - elétrons, prótons e nêutrons - têm que satisfazê-lo. O princípio de exclusão de Pauli é a razão fundamental para muitas das propriedades características da matéria, desde sua estabilidade até a existência das regularidades expressas pela tabela periódica dos elementos.

O princípio de exclusão de Pauli é uma consequência matemática das propriedades do operador momento angular, que é o gerador das operações de rotação, em mecânica quântica. A permutação de partículas num sistema de duas partículas idênticas (que é matematicamente equivalente à rotação de cada partícula de um ângulo de 180 graus) deve resultar em uma configuração descrita pela mesma função de onda da configuração original (quando as partículas têm spin inteiro) ou numa mudança de sinal desta função de onda (para partículas de spin semi-inteiro). Por isso, duas partículas de spin semi-inteiro não podem estar em um mesmo estado quântico, já que a função de onda do sistema composto pelas duas teria que ser igual a sua simétrica, e a única função que atende a esta condição é a função identicamente nula.

Partículas com função de onda anti-simétrica são chamadas férmions, e obedecem ao princípio de exclusão de Pauli. Além das mais familiares já citadas - elétron, próton e nêutron - são também fermions o neutrino e o quark (que são os constituintes elementares dos prótons e nêutrons), além de alguns átomos, como o hélio-3. Todos os férmions possuem spin "semi-inteiro", o que quer dizer que seu momento angular intrínseco tem valor  (a constante de Planck dividida por ) multiplicada por um semi-inteiro (, etc.). Na teoria da mecânica quântica, fermions são descritos por "estados anti-simétricos", que são explicados em mais detalhes no artigo sobre partículas idênticas.

Um sistema formado por partículas idênticas com spin inteiro é descrito por uma função de onda simétrica; estas partículas são chamadas bósons. Ao contrário dos fermions, elas podem partilhar um mesmo estado quântico. São exemplos de bósons o fóton e os bósons W e Z.

No início do século XX tornou-se evidente que átomos e moléculas com elétrons emparelhados ou um número par de eletrons são mais estáveis que aqueles com um número ímpar de eletrons. Num artigo publicado em 1916 por Gilbert N. Lewis[1], por exemplo, a regra três dos seis postulados propostos pelo autor para explicar o comportamento químico das substâncias estabelece que um átomo tende a ter um número par de elétrons em sua camada de valência, sendo esse número, de preferência oito, que estão normalmente dispostos simetricamente nos oito vértices de um cubo (ver: átomo cúbico). Em 1922 Niels Bohr mostrou que a tabela periódica pode ser explicada pela hipótese de que certos números de elétrons (por exemplo, 2, 8 e 18) correspondem a "camadas fechadas" estáveis.

Pauli procurou uma explicação para estes números, que eram a esta altura apenas empíricos. Ao mesmo tempo, ele estava tentando explicar certos resultados experimentais envolvendo o Efeito Zeeman em espectroscopia atômica e no ferromagnetismo. Ele encontrou uma pista essencial em um artigo de 1924 escrito por E.C.Stoner, que estabelecia que, para um dado valor do número quântico principal (), o número de níveis de energia de um eletron no espectro de um átomo de metal alcalino posto sob a ação de um campo magnético externo, situação na qual todos os níveis de energia degenerados são separados, é igual ao número de elétrons na camada fechada de um gás nobre correspondente ao mesmo valor de . Este fato levou Pauli a perceber que os números aparentemente complicados de elétrons em camadas fechadas podem ser reduzidos a uma regra muito simples, a de que só pode haver um elétron em cada estado atômico, definido por um conjunto de quatro números quânticos. Para esta finalidade ele introduziu um novo número quântico com apenas dois valores possíveis, identificado por Samuel Goudsmit e George Uhlenbeck como o spin do eletron.

Conexão com a simetria do estado quântico

[editar | editar código-fonte]

O princípio de exclusão de Pauli pode ser deduzido a partir da hipótese de que um sistema de partículas só pode ocupar estados quânticos anti-simétricos. De acordo com o teorema spin-estatística, sistemas de partículas idênticas de spin inteiro ocupam estados simétricos, enquanto sistemas de partículas de spin semi-inteiro ocupam estados anti-simétricos; além disso, apenas valores de spin inteiros ou semi-inteiros são permitidos pelos princípio da mecânica quântica.

Como discutido no artigo sobre partículas idênticas, um estado anti-simétrico no qual uma das partículas está no estado  (nota) enquanto a outra está no estado  é

No entanto, se  e  são exatamente o mesmo estado, a expressão acima é identicamente nula:

Isto não representa um estado quântico válido, porque vetores de estado que representem estados quânticos têm obrigatoriamente que ser normalizáveis, isto é devem ter norma finita. Em outras palavras, nunca poderemos encontrar as partículas que formam o sistema ocupando um mesmo estado quântico.

Comentários

Mensagens populares deste blogue